240 research outputs found

    Correlation dispersion as a measure to better estimate uncertainty in remotely sensed glacier displacements

    Get PDF
    In recent years a vast amount of glacier surface velocity data from satellite imagery has emerged based on correlation between repeat images. Thereby, much emphasis has been put on the fast processing of large data volumes and products with complete spatial coverage. The metadata of such measurements are often highly simplified when the measurement precision is lumped into a single number for the whole dataset, although the error budget of image matching is in reality neither isotropic nor constant over the whole velocity field. The spread of the correlation peak of individual image offset measurements is dependent on the image structure and the non-uniform flow of the ice and is used here to extract a proxy for measurement uncertainty. A quantification of estimation error or dispersion for each individual velocity measurement can be important for the inversion of, for instance, rheology, ice thickness and/or bedrock friction. Errors in the velocity data can propagate into derived results in a complex and exaggerating way, making the outcomes very sensitive to velocity noise and outliers. Here, we present a computationally fast method to estimate the matching precision of individual displacement measurements from repeat imaging data, focusing on satellite data. The approach is based upon Gaussian fitting directly on the correlation peak and is formulated as a linear least-squares estimation, making its implementation into current pipelines straightforward. The methodology is demonstrated for Sermeq Kujalleq (Jakobshavn Isbræ), Greenland, a glacier with regions of strong shear flow and with clearly oriented crevasses, and Malaspina Glacier, Alaska. Directionality within an image seems to be the dominant factor influencing the correlation dispersion. In our cases these are crevasses and moraine bands, while a relation to differential flow, such as shear, is less pronounced on the correlation spread.</p

    Global Glacier Mass Loss During the GRACE Satellite Mission (2002-2016)

    Get PDF
    Glaciers outside of the ice sheets are known to be important contributors to sea level rise. In this work, we provide an overview of changes in the mass of the world's glaciers, excluding those in Greenland and Antarctica, between 2002 and 2016, based on satellite gravimetry observations of the Gravity Recovery and Climate Experiment (GRACE). Glaciers lost mass at a rate of 199 ± 32 Gt yr−1 during this 14-yr period, equivalent to a cumulative sea level contribution of 8 mm. We present annual mass balances for 17 glacier regions, that show a qualitatively good agreement with published estimates from in situ observations. We find that annual mass balance varies considerably from year to year, which can in part be attributed to changes in the large-scale circulation of the atmosphere. These variations, combined with the relatively short observational record, hamper the detection of acceleration of glacier mass loss. Our study highlights the need for continued observations of the Earth's glacierized regions

    Performance Assessment of Ancient Wind Catchers - an Experimental and Analytical Study

    Get PDF
    AbstractWind catchers – “Baud-Geers” in Persian– are the main component of the traditional buildings in the hot regions of Iran. A Baud-Geer is a tower linked to a building that uses wind to provide natural ventilation and passive cooling. This passive renewable strategy offers the opportunity to improve the ambient comfort conditions in buildings whilst reducing the energy consumption of air-conditioning systems. In this research the natural ventilation performance of a typical wind tower in a hot dry central region of Iran -Yazd city- is studied. The tower is equipped with wind, temperature, air-velocity and solar sensors to acquire a climatic database. Using the measured data, the theoretical values of the ventilation rates are estimated and analysed to assess the performance of the wind tower. Additionally the data collected from the on-site measurements will assist in the validation of a CFD computer model. Finally the findings from this field study will lead to a discussion on the potential of Baud-Geers in achieving thermal comfort. This can contribute to energy savings for cooling and to the reuse and reappraisal of wind towers in Iran

    Aprotinin reduces cardiac troponin I release and inhibits apoptosis of polymorphonuclear cells during off-pump coronary artery bypass surgery

    Get PDF
    Objectives: In addition to blood-sparing effects, aprotinin may have cardioprotective and anti-inflammatory effects during cardiopulmonary bypass-assisted cardiac surgery. In this study, the authors examined whether aprotinin had cardioprotective and/or anti-inflammatory effects in patients undergoing off-pump coronary artery bypass grafting. Design: A prospective randomized clinical trial. Setting: University hospital. Participants: Fifty patients were randomized to control (n = 25) or aprotinin treatment (n = 25) groups. Interventions: Aprotinin was given as a loading dose (2 x 10(6) KIU) followed by a continuous infusion at 5 x 10(5) KIU/h until skin closure. Measurements and Main Results: Blood samples for cardiac troponin I; interleukin-6, interleukin-8, and interleukin-10; tumor necrosis factor a; and elastase were taken after anesthesia induction, completion of revascularization, and 6 hours, 12 hours, and 24 hours after revascularization. Blood samples were taken to assess for apoptosis in polymorphonuclear cells. Baseline plasma levels for cardiac troponin I did not differ between groups but were significantly lower in aprotinin-treated patients at the time of revascularization (P = 0.03) and 6 hours (p = 0.004) and 24 hours (p = 0.03) later. Aprotinin significantly reduced apoptosis in polymorphonuclear cells compared with control-treated patients (p = 0.04). There were no differences in plasma cytokine or elastase levels between groups. Conclusions: The authors conclude that aprotinin reduces perioperative cardiac troponin I release and attenuates apoptosis in polymorphonuclear cells but has no significant effects on plasma cytokine levels in patients undergoing off-pump coronary artery bypass graft surgery

    Contrasting surface velocities between lake- and land-terminating glaciers in the Himalayan region

    Get PDF
    This research has been supported by the Swiss National Science Foundation (grant no. IZLCZ2_169979/1) and the Strategic Priority Research Program of Chinese Academy of Sciences (grant no. XDA20100300). Bert Wouters has been supported by NWO VIDI (grant no. 016.Vidi.171.063).Meltwater from Himalayan glaciers sustains the flow of rivers such as the Ganges and Brahmaputra on which over half a billion people depend for day-to-day needs. Upstream areas are likely to be affected substantially by climate change, and changes in the magnitude and timing of meltwater supply are expected to occur in coming decades. About 10 % of the Himalayan glacier population terminates into proglacial lakes, and such lake-terminating glaciers are known to exhibit higher-than-average total mass losses. However, relatively little is known about the mechanisms driving exacerbated ice loss from lake-terminating glaciers in the Himalaya. Here we examine a composite (2017–2019) glacier surface velocity dataset, derived from Sentinel 2 imagery, covering central and eastern Himalayan glaciers larger than 3 km2. We find that centre flow line velocities of lake-terminating glaciers (N = 70; umedian: 18.83 m yr−1; IQR – interquartile range – uncertainty estimate: 18.55–19.06 m yr−1) are on average more than double those of land-terminating glaciers (N = 249; umedian: 8.24 m yr−1; IQR uncertainty estimate: 8.17–8.35 m yr−1) and show substantially more heterogeneity than land-terminating glaciers around glacier termini. We attribute this large heterogeneity to the varying influence of lakes on glacier dynamics, resulting in differential rates of dynamic thinning, which causes about half of the lake-terminating glacier population to accelerate towards the glacier termini. Numerical ice-flow model experiments show that changes in the force balance at the glacier termini are likely to play a key role in accelerating the glacier flow at the front, with variations in basal friction only being of modest importance. The expansion of current glacial lakes and the formation of new meltwater bodies will influence the dynamics of an increasing number of Himalayan glaciers in the future, and these factors should be carefully considered in regional projections.Publisher PDFPeer reviewe

    Immobilized-Enzyme Reactors Integrated into Analytical Platforms: Recent Advances and Challenges

    Get PDF
    Immobilized-enzyme reactors (IMERs) are flow-through devices containing enzymes that are physically confined or localized with retention of their catalytic activities. IMERs can be used repeatedly and continuously and have been applied for (bio)polymer degradation, proteomics, biomarker discovery, inhibitor screening, and detection. Online integration of IMERs with analytical instrumentation, such as high-performance liquid chromatography (HPLC) systems, reduces the time needed for multi-step workflows, reduces the need for sample handling, and enables automation. However, online integration can also be challenging, as reaching its full potential requires complex instrumental setups and experienced users. This review aims to provide an assessment of recent advances and challenges in online IMER-based (analytical) LC platforms, covering publications from 2014-2021. A critical discussion of challenges often encountered in IMER fabrication, sample preparation, integration into the analytical workflow, long-term usage, and of potential ways to overcome these is provided. Finally, the obstacles preventing the proliferation of IMERs as efficient tools for high-throughput pharmacological, industrial, and biological studies are discussed

    Joint inversion estimate of regional glacial isostatic adjustment in Antarctica considering a lateral varying Earth structure (ESA STSE Project REGINA)

    Get PDF
    A major uncertainty in determining the mass balance of the Antarctic ice sheet from measurements of satellite gravimetry, and to a lesser extent satellite altimetry, is the poorly known correction for the ongoing deformation of the solid Earth caused by glacial isostatic adjustment (GIA). Although much progress has been made in consistently modelling the ice-sheet evolution throughout the last glacial cycle, as well as the induced bedrock deformation caused by these load changes, forward models of GIA remain ambiguous due to the lack of observational constraints on the ice sheet's past extent and thickness and mantle rheology beneath the continent. As an alternative to forward modelling GIA, we estimate GIA from multiple space-geodetic observations: GRACE, Envisat/ICESat and GPS. Making use of the different sensitivities of the respective satellite observations to current and past surface mass (ice mass) change and solid Earth processes, we estimate GIA based on viscoelastic response functions to disc load forcing. We calculate and distribute the viscoelastic response functions according to estimates of the variability of lithosphere thickness and mantle viscosity in Antarctica. We compare our GIA estimate with published GIA corrections and evaluate its impact in determining the ice mass balance in Antarctica from GRACE and satellite altimetry. Particular focus is applied to the Amundsen Sea Sector in West Antarctica, where uplift rates of several cm/yr have been measured by GPS. We show that most of this uplift is caused by the rapid viscoelastic response to recent ice-load changes, enabled by the presence of a low-viscosity upper mantle in West Antarctica. This paper presents the second and final contribution summarizing the work carried out within a European Space Agency funded study, REGINA, (www.regina-science.eu)

    The land ice contribution to sea level during the satellite era

    Get PDF
    Since 1992, there has been a revolution in our ability to quantify the land ice contribution to SLR using a variety of satellite missions and technologies. Each mission has provided unique, but sometimes conflicting, insights into the mass trends of land ice. Over the last decade, over fifty estimates of land ice trends have been published, providing a confusing and often inconsistent picture. The IPCC Fifth Assessment Report (AR5) attempted to synthesise estimates published up to early 2013. Since then, considerable advances have been made in understanding the origin of the inconsistencies, reducing uncertainties in estimates and extending time series. We assess and synthesise results published, primarily, since the AR5, to produce a consistent estimate of land ice mass trends during the satellite era (1992 to 2016). We combine observations from multiple missions and approaches including sea level budget analyses. Our resulting synthesis is both consistent and rigorous, drawing on i) the published literature, ii) expert assessment of that literature, and iii) a new analysis of Arctic glacier and ice cap trends combined with statistical modelling. &#13; We present annual and pentad (five-year mean) time series for the East, West Antarctic and Greenland Ice Sheets and glaciers separately and combined. When averaged over pentads, covering the entire period considered, we obtain a monotonic trend in mass contribution to the oceans, increasing from 0.31±0.35 mm of sea level equivalent for 1992-1996 to 1.85±0.13 for 2012-2016. Our integrated land ice trend is lower than many estimates of GRACE-derived ocean mass change for the same periods. This is due, in part, to a smaller estimate for glacier and ice cap mass trends compared to previous assessments. We discuss this, and other likely reasons, for the difference between GRACE ocean mass and land ice trends
    corecore